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Abstract—Going green is neither a reflex nor mandatory in
computing for most of the users. In a context of heterogeneous
resources, performance is the traditional criteria when it comes
to provisioning. But, nowadays, taking into account the power
consumption of distributed computing architectures has become
mandatory. This paper addresses energy-efficiency challenges
in mapping of jobs in distributed systems. It also proposes
smart energy efficient resource provisioning by enabling the
middleware to manage energy-related events with user-defined
rules. Through the use of the DIET middleware, which enables
custom-based workload placement, we aim at putting in light
tradeoffs between performance and electric consumption. Our
experimental results evaluate the performance and power con-
sumption of three scheduling policies, with significant gain in
terms of energy-efficiency while observing minimal impact on the
global performance. We also evaluate reactivity improvements in
context-aware resource provisioning.

Keywords: Distributed computing, energy-efficiency, work-
load placement, resource provisioning

I. INTRODUCTION

In recent years, distributed computing have proven to be
mandatory in IT. The amount of services and their diversity are
constantly increasing through different usages. Computing has
considerably evolved, going from small isolated nodes to large
cluster-like architectures driven by efficiency and scalability.
An instance of these architectures is known under the name of
Clouds, which offer virtualized resources as a service over
the Internet. Those innovations were led by a race to per-
formance, symbolized by the TOP500 list of supercomputers
which annually ranks the world fastest computers. Within 20
years, the top machine improved performance by a factor
100 (measured in Linpack Performance)1. But nowadays, the
target of reaching exascale computing is limited by an essential
factor: the power consumption [1]. ICT technologies took an
important portion of the world electric consumption, and the
trend is likely to continue and to further increase for years
to come [2] [1]. The Green500 list raises awareness of power
and energy consumption in supercomputers by reporting the
energy-efficiency of large-scale HPC facilities2.

There exist numerous approaches for reducing the elec-
tric consumption of computing resources. Beside hardware

1The TOP500 ranking. http://www.top500.org
2The Green500 ranking. http://www.green500.org

optimizations, software techniques includes Dynamic Power
Management (DPM) and Dynamic Voltage and Frequency
Scaling (DVFS). As its name suggests, DVFS enables the
scaling of CPU frequency to reduce its power needs, leading
to a lowering of the overall energy consumption of the system,
while a server system can be switched off using DPM. A few
other techniques emphasize with the dimensioning and usage
of resources. In virtualized environments, consolidation [3] and
proportional provisioning [4] are often used to dynamically
adjust the sharing of physical servers. Those techniques are to
be triggered according to the operational requirements of the
system, allowing tradeoffs between performance, availability
and durability of computing resources.

This work aims at considering the green criteria in the
frame of server provisioning and workload management. We
suggest a metric allowing infrastructure administrators to put
a preference between performance and energy savings without
prior knowledge or assumptions on the hardware. As the
scheduling process requires access to target platforms and
dynamic information about the resources, we integrate our
proposition within the DIET [5] project that ensures the abil-
ity to access heterogeneous nodes in the middleware layers.
Results shows energy and performance improvements with
minimal impact on the applications and systems. The eval-
uation is performed by the means of simulations and real-life
experiments on the GRID’5000 testbed.

This paper is organized as follows. Section 2 describes
related work. Section 3 presents the DIET middleware and
its features. In Section 4, we discuss the implementation of
our use case by computing independent tasks over hetero-
geneous nodes. Section 5 details our context-aware resource
provisioning proposition, by taking into account periods of
time with specific properties. These algorithms are validated
with experiments in Section 6. Section 7 discusses about out-
of-scope aspects of the current article. Section 8 concludes the
paper and presents some perspectives.

II. RELATED WORK

Despite an increasing demand in Cloud computing, data
centers are rarely fully utilized [6], mostly as a consequence
of overprovisioning. Highly fluctuating resource demands with
low utilization on average are a limitation to energy efficiency,
particularly with light loads on nodes [7]. Energy saving tech-
niques consists of two main approaches. One can slow down



server components [8] [9]. However, Le Sueur et al. found
out that those methods are becoming less attractive on modern
hardware [10]. Actual software proceeds by transitioning entire
servers into a sleep state [3] [4]. Those improvements are well
suited for Cloud Computing, which virtualized infrastructures
to process any type of workload.

As Grid and Utility computing aims “to enable resource
sharing and coordinated problem solving in dynamic, multi-
institutional virtual organizations” [11], it is often harder to
transition servers to shutdown states due to availability reasons
and the specific nature of services they could be offering. In
this context, many works uses load concentration [12] and
consolidation [13] when the nature of the tasks (or virtual
machines) allows those mechanisms.

Many works, such as [14] [15], assume that nodes from
a homogeneous cluster have the same power consumption.
In practice, due to their different uses, nodes from the same
cluster can present different ranges of performance and energy
consumption. It has been shown in [16] that nodes from a same
cluster may have a different power consumption due to fluc-
tuations caused by the external environment, such as external
temperature and position of the node in the rack. Additionally,
Diouri et al. [17] observed that power heterogeneity could be
due to intensive usage of specific hardware components and
leakage power that vary over time.

Most Grids use a batch-scheduler compute model, in which
a Local Resource Manager manages the compute resources
for a Grid site, and users submit batch jobs to request some
resources for some time [18]. Cloud aggregators such as
RightScale3 provide automatic cloud management and load
balancing but are application-specific. At the application level,
distributed OSes such as fos [19] propose programming models
that allows OS systems services to scale with demand. Only a
few managers among those systems offers Green capabilities
[20].

The contribution of this paper is to enable energy-aware
scheduling at the middleware level by providing an abstract
software layer that can be automated and controlled cen-
trally, in a reasonable way. The previous studies suggest us
to consider the dynamic context of execution without prior
assumption of the underlying hardware. Our proposition relies
on the DIET middleware by taking advantage of its ability to
interact with heterogeneous resources and scalable properties.

III. THE DIET MIDDLEWARE

A. DIET overview

The DIET open-source project is focused on the devel-
opment of a scalable middleware with initial efforts relying
on distributing the scheduling problem across a hierarchy
of agents. It is implemented in CORBA and benefits from
the many standardized, stable services provided by freely-
available, high-performance CORBA implementations.

The DIET toolkit is composed of several elements, illus-
trated in Fig. 1. The first element is a Client, an application
that uses the DIET infrastructure to remotely solve problems.
The second element is the SED (Server Daemon) which

3Rightscale home page. http://www.rightscale.com/

Fig. 1. A DIET hierarchy.

acts as the service provider, exposing functionality through
a standardized computational service interface; a single SED
can offer any number of computational services. The third
element of the DIET architecture is the agent. Deployed alone
or in a hierarchy, the agent facilitates the service location and
invocation interactions between clients and SEDs. Collectively,
a hierarchy of agents provides higher-level and scalable ser-
vices such as scheduling and data management. The head of
a hierarchy of agents is called a Master Agent (MA) while
the others are Local Agents (LA).

B. DIET Plug-in Scheduler

By default, when a user request arrives at a SED, an
estimation vector is created via a default estimation function;
typically, this function populates the vector with standard
values which are identified by system-defined tags. Table I
lists the tags that may be generated by a standard installation.

Consequently, applications targeted for the DIET platform
are able to exert a degree of control over the scheduling
subsystem via plug-in schedulers. For example, a SED that
provides a service to query particular databases may need
to include information about which databases are currently
resident in its disk cache, so that an appropriate server may be
identified for each client request. If the application developer
includes a custom performance estimation function in the
implementation of the SED, the DIET framework will associate
the estimation function with the registered service.

Each time a user request is received by a SED associated
with such an estimation function, that function, instead of
the default estimation procedure, is called to generate the
performance estimation values. These features are invoked
after a user has submitted a service request to the MA, which
broadcasts the request to its agent hierarchy.

As the physical infrastructures that are to be used vary
greatly in terms of demands, we used this DIET plug-in
scheduler facility at the server level to express contextual
information about performance and power consumption, that
will be taken into account when servers are provisioned. Such
vectors are then the basis on which the suitability of different
SEDs regarding to energy efficiency is evaluated. The follow-
ing section describes a metric based on customized estimation



Information tag multi- Explanation
starts with EST_ value

TCOMP the predicted time to solve a problem
TIMESINCELASTSOLVE time since last solve has been made (sec)

FREECPU amount of free CPU between 0 and 1
LOADAVG CPU load average
FREEMEM amount of free memory (Mb)

NBCPU number of available processors
CPUSPEED x frequency of CPUs (MHz)
TOTALMEM total memory size (Mb)
BOGOMIPS x the BogoMips
CACHECPU x cache size CPUs (Kb)

NETWORKBANDWIDTH network bandwidth (Mb/sec)
NETWORKLATENCY network latency (sec)

TOTALSIZEDISK size of the partition (Mb)
FREESIZEDISK amount of free place on partition (Mb)

DISKACCESREAD average time to read from disk (Mb/sec)
DISKACCESWRITE average time to write to disk (Mb/sec)

ALLINFOS x [empty] fill all possible fields

TABLE I. EXPLANATION OF THE STANDARD ESTIMATION TAGS.

tags in order to balance tradeoffs between performance and
energy.

IV. WORKLOAD PLACEMENT

The resources where tasks are computed presents a signif-
icant impact on the overall energy consumption of the system.
By prioritizing efficient resources, administrators can achieve
a finer control on the different performance regimes of the
infrastructure. We propose a metric for the sorting of available
computing nodes according to a hybrid of their electric con-
sumption and a secondary parameter, the performance of the
node.

As a result, the GREENPERF metric seeks to optimize
power utilization while maintaining the throughput require-
ments imposed by the application. We thus evaluate the trade-
offs of green scheduling for reducing the energy consumption
while matching performance objectives.

We consider the problem with independent tasks on hetero-
geneous computing nodes with energy monitoring capabilities
and assume that tasks are not assigned priorities. Using the
ratio

Power Consumption
Performance

related to each computing server, a ranking of available nodes
is set.

Figure 2 shows a simple example with 5 servers and 7
tasks, where the most energy-efficient servers are prioritized
(S0 being the ”better” server for the GreenPerf metric).

The computation of this metric requires to obtain data
related to the target servers from the physical infrastructure,
namely the energy consumption and performance.

Regarding to the energy consumption metric, two ap-
proaches are possible in order to obtain the data for a type
of service/task. A static way would imply to perform some
benchmarking by computing a job on all nodes and measure
the instantaneous electric consumption corresponding to the
completion time on each node. That method is not significant
for long periods of time cause the power consumption of the
machine may vary, depending on the actual load or the external

Fig. 2. Example of task placement using the GreenPerf metric.

conditions such as the physical location of the server in the
rack.

In this context, we favor a more dynamic approach. The
energy consumption metric associated to a server corresponds
to the number of requests handled, divided by the measured
power consumption since the first request. It results on a value
based on the recent activity of the resource rather than an initial
benchmark.

We integrate those metrics within DIET scheduling facility
for each SED to fill its estimation vector using new estimation
tags, presented in Table II. The mechanics of this ranking
process comprises an aggregation method, which is simply
the logical process of sorting the servers responses according
to the GreenPerf metric.

Using those, the servers are advised to forward an esti-
mation vector to the scheduler, that will sort them and select
the appropriate one to perform the client request according
to the GreenPerf metric. Every time a client is submitting
a request for a specific application, each server retrieves its
energy consumption and the total number of requests.

The steps of the scheduling process are explained below:

1) Submission of a problem
A client issues a request describing a problem. If none
of the servers are able to solve it, an error is returned



Information tag multi- Explanation
starts with EST_ value

ENERGYAVG average energy consumption on solved requests (J)
FLOPS Node performance (Gflops)

TABLE II. EXPLANATION OF THE CUSTOMIZED ESTIMATION TAGS.

to the client.
2) Propagation of the request

The Master Agent communicates with all the agents
in order to forward the request to the SEDs.

3) Collect of estimation values
Each server computes and gathers its custom metrics,
particularly performance and energy consumption. A
reply containing this estimation vector is sent back to
the Master Agent.

4) Sorting of candidates
Once the Master Agent retrieves all the estimation
vectors, it proceeds to a sort according to a specific
criterion. The first SED is then elected and notified.

5) Solving the problem
The client can contact the elected SED, which will
start the computation of the problem.

Other criteria exist in the literature, involving the consid-
eration of idle consumption [17] or the use rate [21] of the
physical nodes. In Section VI, an evaluation of the GreenPerf
metric is performed by the means of simulation, showing the
tradeoffs between power and performance in high and low
heterogeneity environments.

V. CONTEXT-AWARE RESOURCE PROVISIONING

In the previous Section, we described a custom-based
metric that considers the energy-efficiency of resources when
ranking available servers to assign computing tasks.

Our aim is to provide a simple framework for resource
management which provides control for informed and auto-
mated provisioning. Its implementation lies at the scheduler
level by putting at disposal of the developer (administrator
or end-user) an abstract layer to implement aggregation and
ranking methods based on the contextual information such as
the infrastructure status, the will of users and the energy-related
external events occurring over time.

It establishes relationships between the physical infrastruc-
ture and the logical behaviour.

We consider that the sizing of computing nodes resources
must take into account the will of the user (who expresses
the requests) and the provider (who manages the physical
machines). In this context, we suggest to offer the ability for
the user and provider to express levels of preference in the
allocation of resources in terms of performance and energy
efficiency.

A. Provider Preference

Providers indicate their preference about the energy effi-
ciency of the infrastructure according to specific periods of
time or events. It enables the management of budget limits
and can be used to take advantage of the fluctuations of energy
price or avoid intensive use of specific machines.

We modelize the provider preference in accordance with:

• Resource usage forecast: Using historical usage data to
identify time patterns, and ensure the responsiveness
of the platform during peak periods.

• Electricity costs: Minimizing the cost of computation
by using low cost periods

We define the provider preference as a weighted average
between the resource usage and the electricity cost.

Let c the cost of electricity defined as a ratio between the
cost for a given period and the theoretical maximum cost.

Let u the utilization of the resources defined as a ratio
between the power consumption for a given period and the
total power.

Supposing c, u ∈ [0, 1] for each time period:

Preferenceprovider(u, c)→
α(1− c) + βu

γ

We obtained a Preferenceprovider(u, c) ∈ [0, 1]. By
adjusting the multiplying factors α, β, γ, one can favor a
specific metric over the function. The higher the value of
Preferenceprovider(u, c), the larger the number of available
servers for the time period.

B. User Preference

On the user side, the Preferenceuser indicates the level of
consideration in terms of energy efficiency. When submitting
a request, the user sets Preferenceuser ∈ [−1, 1].

Preferenceuser

−1 ⇔ maximize performance
0 ⇔ no preference
1 ⇔ maximize energy efficiency

As an example, with Preferenceuser = 1, the user favors
the maximization of energy efficiency on the target platform.
In the case of all users indicating that setting, it would result in
waiting queues on the most energy-efficient nodes. In practice,
it is better to limit that value to [−0.9, 0.9] The user preference
is then weighted by the administrator one.

(Pprovider, Puser)⇔ Pprovider(Puser − 1)

C. Event Management

Another aspect of our proposition is to adapt the provision-
ing of resources with consideration of energy-related events,
such as fluctuations of energy cost or heat peaks.

We propose the use of a provisioning planning as a
mechanism to facilitate the monitoring of utilization metrics
over time. That allows the scheduler to perform operations



in an autonomic fashion before executing placement and/or
provisioning decisions with consideration of thresholds.

This information can be obtained by predicting future
usage from historical data, checking schedules provided by the
energy provider or using the infrastructure monitoring system.

We consider that administrators sets thresholds to limit
the number of active nodes in case of out-of-range values
according to the following variables:

• Cost of energy for a given time period

• Temperature conditions

Using these variables, the scheduler is defining a forecast
of resource usage to adapt the number of nodes available for
computation. We use the term of candidate nodes to designate
those resources.

The scheduling process is adapted (cf. Section IV):

1) The Master Agent receives a request describing a task
and a value for Preferenceuser

2) The request is propagated and estimation vectors are
retrieved (cf. Section 4)

3) The scheduler checks the temperature and energy
costs thresholds defined by the administrator and
adjust the number of candidate nodes regarding to
the Preferenceprovider(u, c)

4) The list of candidates is sorted according to the
scheduling criteria

5) The number of candidates is returned to the client

D. Server selection

We proposed in Section IV a dynamic scheduling process
to select the appropriate node based on a client request,
involving retrievals of metrics at each request.

We consider the ability to estimate the duration of pending
tasks. The following information is assumed to be known for
each server at any time:

f number of operations per floating point (FLOPS)
of the server

c average consumption when fully loaded (W)
bc consumption during the boot process (W)
bt boot time (seconds)
w estimation of tasks waiting queue (seconds)
P Preferenceuser
n number of operations per floating point (FLOPS)

to perform a specific task

The knowledge of those variables allows the scheduler
to consider inactive nodes in the decision process and thus
evaluate the costs of turning on servers if necessary. The
execution time of a task is defined by the number of operations
and the performance of a server (nf ). The total computation
time and the energy consumption of a task both depends of
the state of the assigned server at the moment of the scheduling
decision.

The computation time (1) and energy consumption (2) of
a task on a specific server can be divided up to two cases,
depending on the state of the server.

computation time =

{
w + n

f active server
bt+ n

f inactive server (1)

energy consumption =

{
c ∗ n

f active server
bt ∗ bc+ n

f inactive server
(2)

By using those two functions in the scheduler, we can
assign a score S to each server and establish a sorting (3).

S : P → computation time
2

P+1−1 ∗ energy consumption
(3)

This score is coherent with our expectations, regard-
ing to the previous definitions of Preferenceuser and
Preferenceprovider (4):

S :

 P → −1⇒ S ∼ computation time
P → 0⇒∼ computation time ∗ energy consumption

P → 1⇒∼ energy consumption
(4)

In order to form a set of candidate nodes, we aim to
minimize the total power consumed by the active servers of
the infrastructure by maximizing the number of servers among
the most energy efficient ones. We do not consider any bound
for the makespan and we assume that servers have continuous
speeds in terms of performance.

We use a greedy algorithm for selecting candidates servers
with the objective of maximizing the power consumption
among servers (Algorithm 1).

Be T the list of servers sorted according to the GreenPerf
metric, RES the result set of servers, PTotal the accumulated
power of each server and Prequired the required power among
the candidate nodes.

PTotal ← 0
for server ∈ T do

PTotal+ = server.get power()
end
Prequired ← Preferenceprovider ∗ PTotal

P ← 0
RES ← []
while P < Prequired do

P+ = T.get first element().get power()
RES.add(T.get first element()))
T.remove first element()

end
return RES

Algorithm 1: Selection of candidate servers within a power
consumption cap

This section mentioned the mechanisms and the variables
involved through the context-aware resource provisioning. In
order to use those, the developer has to provide platform-
specific functions that retrieves the value of the described
variables. Those can usually be obtained by accessing directly
the physical nodes or using third-party monitoring tools.



In Section VI, we illustrate those mechanisms by the mean
of two scenarios on the GRID’5000 testbed. The first scenario
focuses on workload placement, while the second one puts in
light the reactivity of the scheduler.

VI. EXPERIMENTAL RESULTS

A. The GRID’5000 Testbed

The GRID’5000 testbed has been designed to support
experiment-driven research in parallel and distributed systems.
By leveraging the GRID’5000 platform, users may perform
experiments on all layers of the software stack of distributed
infrastructures, including high-performance computing, grids,
peer-to-peer, and cloud computing architectures. Located in
France, GRID’5000 is composed of 29 heterogeneous clusters,
1,100 nodes, and 7,400 CPU cores with various generations
of technology among 10 physical sites interconnected by a
dedicated 10 Gbps backbone network.

The power measurement is performed with an energy-
sensing infrastructure of external wattmeters from the SME
Omegawatt. This energy-sensing infrastructure, which was
also used in [22], enables to get at each second the mean
power consumption in Watts computed over up to 6000 power
samples for each monitored node [23]. We consider that this
mean power consumption displayed each second is a very
accurate instantaneous power measurement. Logs provided by
the energy-sensing infrastructure are displayed in live and
stored into a database, in order to enable users to get the power
and the energy consumption of one or more nodes between a
start date and an end date.

The performance metric is based on a measure of the node
performance using all its CPU cores. It produces a value in
flops, indicating the number of floating points operations per
second. Those benchmarks are based on measurements using
ATLAS4, HPL5 and Open MPI6.

B. Workload placement

The first evaluation aims to compare distributions of tasks
among nodes on GRID’5000, depending on three different
policies named PERFORMANCE, POWER and RANDOM.

PERFORMANCE and POWER correspond, respectively,
to the setting of a priority on the fastest nodes and on the
most energy-efficient nodes. They represent the bounds of
the GreenPerf metric. The RANDOM policy corresponds to
a shuffle of servers. We do not need to use an estimation tag
for random provisioning: the shuffle of servers is performed at
the Master Agent level using random numbers.

To be able to construct such scenario, we consider a client
submitting a set of tasks. A single task to solve is a CPU-bound
problem which consists in 1e8 successive additions, enabling
the distinction of nodes in terms of performance. As each task
is using a single core, a server cannot compute a number of
tasks superior to its number of cores at a time.

4Automatically Tuned Linear Algebra Software.
http://sourceforge.net/projects/math-atlas/

5Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl/

6High Performance Message Passing Library. http://www.open-mpi.org/

We deploy the DIET middleware on 14 physical nodes
from the GRID’5000 testbed that offers energy measurement
capabilities:

• 12 dedicated nodes for the Server Daemons (SED)

• One dedicated node for the Master Agent

• One dedicated node for the Client

The machines are picked among 3 different clusters. The spec-
ifications are presented in Table III. The nodes are connected
to a switch with a bandwidth of 1Gbit/s using Debian wheezy
as their Operating System.

Cluster Nodes CPU Memory Role
Orion 4 2x6cores @2.30Ghz 32GB SED

Sagittaire 4 2x1cores @2.40Ghz 2GB SED
Taurus 4 2x6cores @2.30Ghz 32GB SED

Sagittaire 1 2x1cores @2.40Ghz 2GB MA
Sagittaire 1 2x1cores @2.40Ghz 2GB Client

TABLE III. EXPERIMENTAL INFRASTRUCTURE.

The total amount of client requests is based on the total
number of cores available. Let n be the total number of cores
present among the DIET infrastructure. The total number of
requests is equivalent to 10n.

The temporal distribution of jobs contains two phases:

• A burst phase, when the client submit simultaneously
n requests

• A continuous phase, when the client submit requests
a rate of 2 requests per second.

Considering that the scheduler does not have any particular
information on the nodes nor establishes assumption about the
hardware, the dynamic information is gathered as tasks are
computed by the servers.

Figures 3,4 and 5 show the results of this experiment.
The x-axis presents the different nodes available to solve the
problem. The y-axis shows the number of tasks executed by
the node.

Fig. 3. Distribution of jobs using power consumption as placement criteria.

Figure 3 describes the distribution according to the power
consumption criteria. Observing Figure 3, we observe that



most of the jobs are computed on Taurus nodes, which appears
to be the most energy-efficient. Computation on Orion and
Sagittaire occurs during the ”learning” phase or when the
Taurus nodes are out of capacity.

Fig. 4. Distribution of jobs using performance as placement criteria.

Figure 4 describes the distribution of tasks when perfor-
mance is the criteria when selecting a node. The load balancing
of jobs is similar to Figure 3, with the majority of tasks on
Orion nodes.

Fig. 5. Distribution of jobs with random placement.

In Figure 5, despite a random distribution of jobs, Sagittaire
nodes are computing less tasks than other nodes. It is explained
by the fact that a single task is computed slower on those
nodes. Thus, they are less frequently available when decisions
are performed.

Figure 6 presents the energy consumption of the whole
infrastructure grouped by clusters. We precise that the energy
consumption measured on the DIET agents were constant
when executing the three algorithms and does not present any
influence on the comparison. We can observe that distributing
the workload using the RANDOM policy is not particularly
energy efficient as it guarantees that all the resources are in
use during the experiment.

We use Table IV to compare makespan and energy con-
sumption metrics among the scheduling policies.

Fig. 6. Energy consumption per cluster.

RANDOM POWER PERFORMANCE
Makespan (s) 2336 2321 2228

Energy (J) 6041436 4528547 5618175

TABLE IV. EXPERIMENTAL RESULTS

Observing the performance, the best case is rationally
observed when setting a priority on nodes with a high number
of Flops (PERFORMANCE). Comparing that value with the
POWER makespan, we noticed a loss of performance up to
6%.

In terms of energy consumption, the POWER policy
presents a gain of 25% when compared to the RANDOM,
and up to 19% compared to PERFORMANCE.

Random appears to be the worst case due to the fact that
it ensures that all the nodes are in use, resulting of a higher
energy consumption. The use of slow nodes is also impacting
the performance but this effect is reduced by a covering up
effect (Fast nodes will compute more tasks in parallel).

C. Evaluation of GreenPerf

We evaluate the GreenPerf metric in order to establish
the relevancy of the ratio Power Consumption

Performance in high and low
heterogeneity environments.

In this part, we use a simulation to manage the level of
heterogeneity. After performing a benchmark on the physical
nodes of GRID’5000, we obtained for each server its mean
computation time for a single task along with the peak and
idle power consumptions. Those values are used to sum up
the energy consumption of the whole infrastructure during the
simulations. Each task is computed with the maximal power
consumption of the servers. During the simulation, each server
is limited to the computation of one task.

Figure 7 shows the comparison of metrics with low hetero-
geneity environment. In this scenario, we use 2 different type
of servers with similar specifications (Table III).

The coordinates of G, GP and P represent the average
values obtained of, respectively, the POWER, GREENPERF
and PERFORMANCE metrics. The shadings represent the area
of RANDOM values.



Fig. 7. Comparison of metrics with 2 different types of servers and 2 clients
submitting requests.

In a second scenario, we consider two other types of
clusters (Table V) to increase the heterogeneity of the platform.
Figure 8 shows a better tradeoff between POWER and PER-
FORMANCE, putting in light the need of a sufficient diversity
of hardware to efficiently use GreenPerf.

Fig. 8. Comparison of metrics with 2 different types of servers and 2 clients
submitting requests.

Cluster Idle consumption Peak consumption
Sim1 230 190
Sim2 190 160

TABLE V. ENERGY CONSUMPTION OF SIMULATED CLUSTERS

D. Context-aware resource provisioning

The third experiment intends to demonstrate the reactivity
of the scheduler by considering fluctuations of two metrics
over time: the cost of electricity and the temperature. We
inject energy-related events at the scheduler level while a
client, aware of the number of available nodes, is submitting
a continuous flow of requests intending to reach the capacity
of the infrastructure.

In the interests of simplification, the cost of energy is
defined as a ratio between the cost for a given period and

the theoretical maximum cost. Related to the cost of energy,
we defined three states:

• Regular time, when the electricity cost is the highest
(1.0)

• Off-peak time 1, when the electricity cost is a less
expensive during than regular time (0.8)

• Off-peak time 2, when the electricity cost is the least
expensive (0.5)

Heat measurements are defined through two states. In this
example, we consider a single temperature measure within the
infrastructure, described by the following states:

• In-range temperature of utilization (< 25 degrees)

• Out-of-range temperature (> 25 degrees)

The scenario involves the injection of four different events
in the provisioning planning of the scheduler, splitted into two
categories: scheduled and unexpected. The scheduled events
correspond to a prediction or a predefined schedule, that is
known before its occurrence by the scheduler. Unexpected
events can be discovered only at the exact time of occurrence,
such as heat alerts.

Let t be the start time of the experiment:

Event 1 At t+60 min, the electricity cost decreases at 0.8
(scheduled event)

Event 2 At t + 120 min, the electricity cost decreases at
0.5 (scheduled event)

Event 3 At t+160 min, a raise of temperature is detected
(unexpected event)

Event 4 At t + 240 min, the temperature get back to an
acceptable value (unexpected event)

The status of the platform corresponds to the value of
the exploitation metrics at an instant t. In this example, we
consider that the Master Agent is checking the status of the
platform every 10 minutes, with the ability to get information
about the scheduled events occurring at an instant i+2.

On Figure 9, we present a sample of the provisioning
planning. It is an XML shared file using a readers-writers
lock that refers to a specific time-stamp. For each sample,
we defined three tags, namely temperature, candidates and
electricity cost. At each time interval, the scheduler performs
decisions according to the value of the tags. Thus, future
information, such as forecasts, can be add to the provisioning
planning, ensuring a dynamic behavior regarding to the various
contexts. The tags and time interval are customizable variables
that can be adjusted to fit specific contexts.

<timestamp value="1385896446">
<temperature>23.5</temperature>
<candidates>8</candidates>
<electricity_cost>0.6</electricity_cost>

</timestamp>

Fig. 9. Sample of the server status.

We set thresholds and actions to be triggered according
to the value of the thresholds. The actions can be defined



through scripts or commands to be called by the scheduler.
In this example, we implemented five behaviors associated to
the experiment metrics. Let c be the cost of energy for a given
period and T the temperature measured at an instant t.

• if T > 25 then candidate nodes = 20% of all nodes

• if 1.0 >= c > 0.8 then candidate nodes = 40% of
all nodes

• if 0.8 >= c > 0.5 then candidate nodes = 70% of
all nodes

• if c < 0.5 then candidate nodes = 100% of all nodes

Fig. 10. Evolution of candidate nodes and power consumption.

Figure 10 presents the evolution of the number of candidate
nodes and the electric consumption over time. The left y-
axis shows the total number of nodes in the infrastructure.
The plain line presents the number of candidates during the
experiment. The line with crosses is the evolution of the energy
consumption, using the right y-axis. Each cross describes an
average value of energy consumption measured during the
previous 10 minutes. The x-axis represents the time with a
total of 260 minutes.

The infrastructure is deployed on GRID’5000, composed
of the nodes defined in Table III. The experiment starts with
an energy cost value of 1.0 and a Preferenceprovider(u, c)
giving priority to energy-efficient nodes. The Preferenceuser
is not having any influence in the current scenario as the client
dynamically adjusts its flow of request to reach the capacity
of available nodes.

Event 1 is a decrease of the electricity cost occurring at
t+60 min. The Master Agent get aware of that information at
t+ 40 min. Observing a future cost of 0.8, the Master Agent
plans ahead to provide 8 candidates nodes at t+ 60 min. The
set of candidates is incremented by small subsets of nodes to
obtain a progressive start, at t + 50 min and t + 60 min. (it
avoids heat peaks due to side effect of simultaneous starts).We
observe a linear increase of electric consumption through the
infrastructure. After each completion of request, the Client is
notified of the current amount of candidates nodes, and is free
to adjust its request rate.

Event 2 is similar to Event 1. The electricity cost is
allowing the use of every available node in the architecture.

Those nodes are added to the set of candidates during the
following 20 minutes, resulting in a use of all possible nodes
between t+ 120 and t+ 160 min.

Event 3 simulates an instant raise of temperature, detected
by the Master Agent at t+160 min. According to administrator
rules, the predefined behavior is to reduce the number of
candidates nodes to 2. It is performed in 3 steps, in order
to cause a drop of heat (simulated) and energy consumption
(measured). We allow tasks in progress to complete, resulting
in a delayed drop of energy consumption. The system keeps
on working with 2 candidates until an acceptable temperature
is measured at t+240 min (Event 4). The Master Agent then
starts to provision the pool of candidates, every 10 minutes to
reach again the value of 12.

The scenario of that experiment shows the reactivity of the
scheduler and the ability to manage energy-related events by
adapting the number of provisioned resources of the physical
infrastructure, therefore its power consumption.

VII. DISCUSSION

This paper discusses positive results concerning the use and
management of a reactive middleware with green capabilities.
However, we used arbitrary rules to perform corrective actions
during the experiments. Parameters such as the amount of
nodes to add/remove from the set of candidates must be
expressed in relation with the temperature by taking into
account the heat dissipation. Those concerns are considered
to be out of the scope of this paper.

VIII. CONCLUSIONS AND PERSPECTIVES

Computing as an utility highly uses distributed computing
for scientific as well as commercial applications. Due to aggre-
gation of computing, network and storage hardware, efficient
workload placement is a major concern and needs to be made
across the whole infrastructure with consideration of energy
efficiency. Previous research typically address this problem
through power management techniques that aim at maximizing
the utilization of resources.

We propose methods for provisioning resources and dis-
tribute requests with the objective of meeting performance
requirements while reducing power consumption. We validate
our strategy through real life experimentation using the DIET
toolkit and the GRID’5000 experimental testbed.

Comparing three different scheduling policies by providing
tunable comparison based on the performance and the energy
consumption, results show a gain of energy consumption up
to 25% with a minor loss of performance (6%).

We propose and evaluate a hybrid metric taking into
account performance and power consumption as a ratio of
energy efficiency. The effectiveness of this metric strongly
relies on the heterogeneity of the different servers.

The second part considers the provisioning of resources,
while taking into account energy-related events and user pref-
erences. Results show a reactive scheduling, allowing policy
management to be abstracted into a software layer that can be
automated and controlled centrally. We expect this approach



to be very useful when applied to provisioning servers, using
contextual data from third-party predicting or monitoring tools.

Future work will revolve around fine-grained scheduling
by taking into account spatial information. We intend to lever-
age control over energy consumption by considering budget
constrained scheduling.
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