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Abstract—As the demand for Cloud infrastructures increases
dramatically across the globe, the reduction of energy consump-
tion in such infrastructures has become a challenge, urging for
solutions that concurrently mitigate the environmental impact
while maximizing performance benefits. Several approaches to re-
duce the power consumption of data centers have been described
in literature. However, these approaches do not always provide
means for providers (addicted to low energy consumption) and
users (addicted to powerful resources) to specify how they want
to explore such trade-off through novel methods of workload
placement. In this context, we intend to perform an efficient
selection of resources with respect to a certain quality of service
and energy consumption. Our work synergizes two state-of-
the-art technologies by combining Multi-Objective Evolutionary
Algorithms (MOEA) with trade-off mechanisms using the DIET
toolkit. We apply middleware-level mechanisms to provide a
framework for assigning jobs to distributed resources and explore
energy efficient resource provisioning without detailed knowledge
of the underlying hardware platform. Evaluation of the proposed
solution under different scheduling policies shows significant
gains of energy consumption with some improvement on the
overall workflow completion time. Experimental validation is
performed on a real-life testbed using Cloud traces. We also
evaluate performance of the optimization engine and scheduling
overheads.

Keywords—Distributed computing, energy-efficiency, workload
placement, resource provisioning, evolutionnary algorithm, middle-
ware, workflow execution, multi-objective scheduling

I. INTRODUCTION

Many of the IT services that organizations utilize nowa-
days, depend on large computing infrastructures that are hosted
either locally or at remote data centers [1]. A popular business
model for renting out resources of a data center is provided
by Cloud Computing, which enables customers to allocate
computing, storage and network capacity over the Internet and
pay by the hour of use. In recent years, concerns about energy
consumption are increasingly becoming common as Clouds
often consume a large amount of electricity to power and
cool datacenters they rely on [2]. This situation is partially
caused by an overprovisioning to ensure service delivery
at peak hours, leading to underutilized resources in other
times [3], [4]. Efficient allocation of tasks to resources can
improve consolidation on a minimum number of nodes, while

transitioning remaining unused nodes to low-power modes or
shutdown [5], [6]. The implementation of the task-to-resource
allocation policy consists in picking in real time at Cloud
providers end the best combination of resources, in order to
fit the customer’s needs at lowest cost, risk and lowest energy
consumption. Server allocation policies usually involves two
actors: the Cloud provider who defines placement policies
according to available resources while the customer submit
sets of tasks to be executed. Such policies must benefit both
the provider and customer in terms of costs and completion
time.

In previous work [7], the present authors proposed methods
for provisioning resources and distributing requests with the
objective of meeting performance requirements while reduc-
ing energy consumption. GreenPerf, a hybrid metric, was
introduced as a ratio of performance and power consumption
for energy efficiency. The proposed solution considered will-
ingness to perform energy savings by balancing user’s and
provider’s preferences when scheduling the requests over the
physical nodes. However, due to the contradictory nature of
those objectives, GreenPerf did not explore the large possible
range of solutions. The search and computation of these
solutions is a NP-Hard problem, which can be formulated
as an optimization problem with multiple contrary objectives:
minimizing both energy consumption and completion time. In
this work, we have used Non-Dominated Sorting Differential
Evolution to obtain the best Pareto front with a spectrum of
solution representing minimum energy at one end of the front
and minimum makespan (completion time) at the other.

Since the first attempt to solve multi-objective optimization
problems by using Genetic Algorithms [8], the field of Multi-
Objective Evolutionary Algorithms (MOEAs) has almost con-
tinuously seen significant development and is widely used
today in numerous applications. Among the algorithms devel-
oped in early stages, a few such as Vector Evaluated Genetic
Algorithms [8], Niched Pareto Genetic Algorithms [9], Pareto
Archived Evolution Strategy [10], Strength Pareto Evolution
Algorithm [11], and the Non-dominated Searching Genetic
Algorithm [12] are noteworthy in the sense that they triggered
alternate lines of thought and were subjected to comparisons
across multiple test cases. Zitzler [13] and Deb [14] carried



out significant improvements in their earlier approaches [11],
[12] resulting in SPEA2 and NSGA-II. Some aspects of the
latter approach have been incorporated in the development of
the Non-Dominated Sorting Differential Evolution II technique
(NSDE-II), used in the current paper. Differential Evolution
(DE) was selected as the evolutionary method of choice on
the basis of the author’s prior studies on the relative efficiency
and merits of this against Genetic Algorithms, as reported in
[15].

This work focuses on workflow applications that con-
sist of multiple components (tasks) related by precedence
constraints that usually follow the data flow between them,
i.e., data files generated by one task are needed to start
another task. Although this is the most common situation,
precedence constraints may exist for other reasons, and be
arbitrarily defined by the user. We intend to integrate NSDE-
2 as a Multi-Objective Optimization engine within a large
scale infrastructure. NSDE-2 would be accessible as a remote
service that accepts a workflow as an input and computes a
set of placement solutions that minimizes energy consumption
and performance requirements as an output. This output is to
be placed and executed on the infrastructure using the DIET
Middleware.

This paper introduces several contributions: (i) an evolu-
tionary approach to workflow placement based on our previous
work, (ii) a choice of solutions to the user based on his
priorities, ranging from best-energy to best-makespan, and
intermediates and (iii) an experimental protocol using a real-
life testbed and Cloud traces.

The remainder of this paper is structured as follows.
Section II presents Differential Evolution, the DIET toolkit
and a short summary of related works from the literature. In
Section III, we introduce the Non-Dominated Sorting Differ-
ential Evolution II algorithm. In Section IV we present the
problem formulation. In Section V, we propose a generic and
customizable infrastructure for workload placement on a large
scale infrastructure. To assert the pertinence of our algorithm,
an experimental protocol is defined in Section VI. Finally we
conclude in Section VII and give insights for perspectives and
future improvements of our approach.

II. BACKGROUND AND RELATED WORK

In this section we provide an overview of evolutionary
optimization. We then introduce the DIET middleware and the
features used in this paper. Finally, we present a short summary
of related work on workload placement and energy efficiency.

A. Differential Evolution

The developments in Multi-Objective Evolutionary Algo-
rithms refered in Section I have been along the track of Genetic
Algorithm (GA) [16]. At the basic algorithm level, Differential
Evolution (DE) was formulated as an alternate approach to
GA by Storn and Price [17], [18]. About the same time,
Particle Swarm Optimization (PSO) was proposed by Kennedy
and Eberhart [19], and Ant-Colony Optimization by Dorigo
et al [20] [21]. Though the latter two are not evolutionary
algorithms per se, they are also expressions of natural life
processes in the optimization domain and can be broadly
classified as belonging to an extended family of evolutionary

optimization techniques. The present authors have applied DE
in a few complex industrial processes [15], [22]; the latter
work also provides a comparison in computational efficiency
for that industrial process between GA and DE demonstrating
that DE comes out favourably. In [23], the authors have
systematically compared DE with PSO and concluded that
DE performs better. Due to the above comparisons and the
authors’ prior experience in the field they have used DE as
the baseline algorithm for the current multi-objective problem;
however, this is not to comment on the relative merits of
different algorithms which tend to vary according to specifics
of problem and comparison metrics. Das and Suganthan [24]
provide a survey of developments and applications in the field
of DE. There are quite a few extensions of the DE algorithm
into the multi-objective paradigm, as can be seen in [24],
[25], among others. The current work bears broad similarity,
algorithmically, to the prior developments of Iorio and Li [26],
[27] who in turn have adapted some features of NSGA-II
replacing the GA operations with corresponding DE steps.

B. The DIET Middleware

DIET [28] is an open-source middleware that enables a
scalable execution of applications. Tasks are scheduled on
distributed resources using a hierarchy of agents, as shown
in Figure 1. DIET comprises several elements, including:

• Client application that uses the DIET infrastructure
for remote problem solving.

• Server Daemon (SeD), which acts as a service
provider exposing functionality through a standardized
computational service interface. A single SeD can
offer any number of computational services.

• Agents, deployed alone or in a hierarchy, facilitate
service location and invocation interactions between
clients and SEDs. Collectively, a hierarchy of agents
provides high-level and scalable services such as
scheduling and data management. The head of a
hierarchy is termed as Master Agent (MA) whereas
the others are Local Agents (LA).

Fig. 1. An example of DIET Hierarchy

Applications are given a degree of control over the schedul-
ing subsystem using plug-in schedulers (available in each
agent) that use information gathered from resources via estima-
tion functions (filled by each SeD). When a SeD receives a user



request, by default it uses a pre-defined function to populate an
estimation vector with system related information. A developer
can create his own performance estimation function and
include it into a SeD so that when the SeD receives a user
request, the custom function is called to populate an estimation
vector. These estimation vectors are used by agents to locate
and invoke services required to execute a user application.
Typically, a client request is made to a MA, which in turn
broadcasts it to its agent hierarchy.

Another feature used in this work is DIET workload man-
agement capabilities. The DIET engine can handle workflow
by assigning tasks to SeDs using one DIET service call. This
assignment is made internally and dynamically by the MA,
which receives requests from clients containing the description
of a workflow. In this context, the MA determines how to
schedule the workflow according to:

• Precedence constraints between tasks

• Scheduling policies/current plug-in schedulers

• Service performance properties

• Available resources on the infrastructure

This work uses the design of a new DIET plug-in scheduler
to express information about servers’ performance and power
consumption, which is then taken into account when servers
are provisioned to applications. Estimation vectors are used to
determine the suitability of different SEDs while considering
energy efficiency for executing the workflow and performance
when executing the optimization engine service.

C. Related Work

Several approaches using multi-objective optimization to
manage workload placement are present in the literature [29],
[30]. Objectives refers to load balancing [31], load prediction
[32] or platform reconfiguration [33], [34], among others. In
[35], authors modelize the workflow scheduling problem as
an evolutionary optimization problem with specification of
genetic operators and simulations on a set of Real-World and
random workflows. Fuzzy theory over a Pliant logic approach
is used in [36] to improve energy efficiency in simulation-
based experiments. Authors concluded with the need to find
trade-offs between energy consumption and execution time for
optimization. We used in our study a similar set of traces with
a different interpretation of the task duration (cf Section VI).

Moreover, existing work [37] commonly assume that nodes
from a homogeneous cluster consume the same amount of
power, which is not always true in practice. Due to their
different uses, nodes from a cluster can present different
ranges of performance and power consumption. Causes of
such differences include external environment factors, such as
temperature and node location in a rack, aging of hardware
components due to intensive use and leakage power that
varies over time [38], [39]. We conclude from those studies
that scheduling decisions based on performance and energy
consumption values of the machines should be evaluated and
dynamically adjusted using live monitoring.

From a resource management perspective, Grids and
Clouds use meta schedulers to schedule jobs across multi-
ple sites and local resource managers that control compute

resources at a site level. Users commonly submit batch jobs to
request resources over a period [40]. Cloud aggregators such
as RightScale1 provide application-specific Cloud management
and load balancing. At an application level, distributed OS such
as [41] offer programming models that allow OS services
to scale to match demand. Most of these systems, however,
neither take energy efficiency into account nor offer means
for users to specify how they want to schedule their applica-
tions while exploring trade-offs between energy efficiency and
performance [42].

III. NON-DOMINATED SORTING DIFFERENTIAL
EVOLUTION II (NSDE-II)

Differential Evolution (DE) belongs to the broad class of
evolutionary optimization techniques that developed as distinc-
tive variants of classical Genetic Algorithms. This class of
features has certains common features with Genetic Algorithm
optimisation, namely, they work in parallel on a population of
candidate solutions, are stochastic in nature, do not require
the objective function to be analytic or even mathematically
tractable, and are much less likely to get stuck in local optima
as compared to gradient based methods. They differ from one
another primarily in the manner in which candidate solutions
in a new generation are synthesized from solutions in the
current one, which effectively translates into their method of
search of the total solution space for a global solution. The
fitness of each candidate, as defined by one (or more) objective
function(s), plays an important part in the evolution.

The core idea in DE is to superpose the difference between
two randomly selected solution vectors (where the elements of
a vector correspond to the values in dimensions of the solution
space) on a third solution vector with each solution vector
being a member of candidate population sets to obtain a new
solution. Initially when (and if) the candidate solutions are
spread across the solution space, the differences and hence
the changes in solution vectors are large, and as the solutions
converge to the global optimum, the changes get finer enabling
attainment of the optimum faster. This is in contrast to classical
GA where the changes on a solution vector are neutral to the
level of evolution towards the global optimum.

This section presents the concept of differential evolution
for a single objective and the key aspects to adapt it to Multi-
Objective Differential Evolution.

1) Baseline Differential Evolution: Formally, if the dimen-
sionality of the solution space is denoted as D and the number
of candidate solutions is N , then the elements of the ith vector
of the solution Xi,G at generation G may be denoted as

Xi,G = (X1,i,G, X2,i,G, X3,i,G, ..., XD,i,G) for all i ∈ N
(1)

The Differential Evolution (DE) process fundamentally
generates new solutions from the current candidate set by
adding the weighted difference between two randomly selected
candidate solution vectors to a third to generate a mutant
vector, and then creating a crossover between an existing
vector and the mutant that is called the “trial” vector. The latter
is allowed to replace the existing vector only if it is found

1Rightscale: http://www.rightscale.com/



to be more fit, the complexity of this fitness determination
exercise depending entirely upon the nature of the problem
under consideration. If Vi,G represents the mutant vector, then
according to the baseline DE process called DE/rand/1 [17],
[18], [25]

Vi,G = Xr1,G + F × (Xr2,G −Xr3,G) (2)

where r1,r2 and r3 are random integers less than N , different
from each other and from i, and F usually lies between 0.5
and 1. There are many variations of this baseline process where
two instead of one difference terms are sometimes considered,
the best solution in a population is taken into account, etc.;
descriptions of alternative schemes may be seen in [24], among
others.

Crossover is performed between the mutant vector Vi,G and
the target vector Xi,G to generate a trial vector Zi,G according
to

zj,i,G =

{
vj,i,G if randj(0, 1) ≤ Cr

xj,i,G otherwise
(3)

where zj,i,G is the element j of the trial vector Zi,G,
randj(0, 1) denotes a random number between 0 and 1 applied
to the element j, Cr is the crossover threshold usually set
between 0.4 and 1. Eq. (3) simply states that the element j
of the trial vector Zi,G is taken from the mutant vector if
the corresponding random number generated with seed j is
less than Cr, else the original value is left unchanged for that
element.

At the final selection step the choice for candidate i in the
next generation is made between Zi,G and Xi,G on the basis
of higher fitness by direct one-to-one comparison.

The present work generates the mutant vector according
to the alternate scheme (proposed in [18] and also used by
current authors in [22] where it is found to work better than
other DE variants)

Xi,G = Xr1,G +R× (Xbest,G −Xr1,G) + F × (Xr2,G −Xr3,G)
(4)

where R is set at 0.5 and F varies randomly between -2 and +2
across generations (and are same for all i within a generation).
The crossover probability Cr in eq. 3 is set at 0.7.

2) Multi-Objective Differential Evolution NSDE-II: Com-
pared to single-objective Differential Evolution (DE), the
mechanisms for multi-objective DE are radically different. The
basis for this difference follows from the altered conditions of
selection that relate to this statement in the section above the
“choice for candidate i in the next generation is made between
Zi,G and Xi,G on the basis of higher fitness by direct one-to-
one comparison”. That works for a single objective which tags
a fitness value to both the solutions, enabling comparison. But
if there is more than one objective, it is quite possible that one
of them is more fit with respect to one objective, and the second
for some other objective. And hence one cannot conclude
which solution is more fit, upsetting the basic mechanism of
single-objective DE.

This work has adopted the basic multiple-objective selec-
tion techniques of NSGA-II [14] while replacing the baseline
GA operations to those of the DE variant outlined in Eqs. (3)

and (4) for generation of a trial vector. Hence this is named
as NSDE-II. In a problem with K objectives FFk, k ∈ 1...K,
a candidate solution vector Xp is said to dominate another
solution Xq if

FFk(Xp) > FFk(Xq), k ∈ 1...K (5)

and for at least one k, FFk(Xp) > FFk(Xq); where p, q ∈
1...N , N is population size; and in turn Xq is said to be
dominated by Xp. This definition is used immediately below.

Now it is apparent that for a population of candidate
solutions and with multiple objectives, there will be either
one of three types of relations between any pair of candidate
solutions. Either one dominates the other according to Eq. (5),
or one is dominated by the other (i.e. converse to the first
relation), or neither dominates or is dominated by the other, i.e.
for some objectives one is better and for the balance objectives
the other is the better.

This brings us to the NSDE-II selection process from one
generation to the next.

Steps of Non-dominated selection:

1) A population of size N , taken for all parent vectors
and all trial vectors thus forming a collective pool of
size 2N .

2) To every pool-member i allocate a number ni and a
vector Si, where the former denotes the number of
members that dominate it and the latter contains the
identification index of all members that it dominates.
This implies that Si is a set whose size can vary from
the null to at most 2N − 1.

3) Place all members having ni = 0 into a sub-pool
called Front F1, which is an accumulation of the
fittest members (i.e. those not dominated by any
others). Thus the original pool is now depleted by
the number of members shifted to F1.

4) Traversing all i put in F1, go over all the members j
that are listed in Si and reduce the corresponding
value of nj by 1. This implies that once a non-
dominated member is shifted out of the pool, each
remaining member of the depleted pool who was
originally dominated by that removed member, is now
dominated by one less member in this pool.

5) Now repeat steps 2-4, with the rider that the new set
of ni = 0 members (that emerge upon reducing the
cardinality of domination by one) are put into the
second front F2, and then F3, and so on.
At this point we have segregated the members of pool
into a series of fronts with descending degree of non-
dominance.

6) If the size of front F1 is less than N , select all
members of F1 into the next generation.

7) Now if the size of front F2 is such that #(F1 +
F2) < N , then select all members of F2 also into
the next generation (symbol # denotes cardinality of
a set).

8) In this way move on to F3, F4 till one comes to
some Fq where the size say sq is larger than the
number of unfilled spaces in gen-next, say uq , i.e.
uq =

{
N −

∑q−1
m=1 #Fm

}
, and sq > uq



9) Use the Crowding Distance Algorithm to select uq

out of sq .

The core concept of the Crowding Distance Algorithm
[14] is to select solutions that maximize diversity, i.e. if one
solution is in a dense zone with many other solutions around,
and another in a relatively sparse zone, then other aspects
being equal, the solution from the sparse zone is selected.
The algorithm quantifies the density of a point in terms of
the distance between its two straddling neighbors in every
dimension of the objective space, rather than of the parameter
space.

IV. PROBLEM FORMULATION

The aim of this work is to improve the energy efficiency of
a set of machines while concurrently reducing completion time
of a given set of jobs, through optimized workload placement.
A server (computing node) is modeled with three resources:
CPU, DISK and NETWORK and runs processes which consume
these resources. Each process is to be assigned to a single
machine, and cannot be moved from one machine to another.

A. Decision parameters

Any optimization problem will have design parameters
whose best possible values from the viewpoint of the objectives
are sought to be attained in the optimization process. The
optimization task here is to map a given set of tasks in a
certain sequence onto the available resources.

Suppose there are m number of resources and n tasks.
Then, for any resource j, ∀j ∈ [1...m], all possible permu-
tations of subsets of all sizes of the set of tasks of size n,
constitute the total solution space. If we call the size of this
solution space as Sj , then

Sj =

n∑
k=0

P (n, k) where P (n, k) =
n!

(n− k)!
(6)

Since Sj is independent of j, we may write it simply as S.
It then follows that the size of the total solution space is mS .

The following information is assumed to be known for each
server s at any time:

fs Number of FLoating-point Operations Per Second
(FLOPS)

dws Disk Writing rate
drs Disk Reading rate
nets Available Network bandwidth
cs Average power consumption
nfi Number of FLOPS to perform the task i.
nbwi Number of bytes written on disk by the task i.
nbri Number of bytes read on disk by the task i.
nneti Number of bytes exchanged by the task over the

network by the task i.

The knowledge of these variables enables the scheduler
to consider the energy efficiency related to the completion of
tasks.

B. Objective functions

We have two objective functions:

1) Minimize Makespan (i.e. time taken for completion
of all tasks in the workflow)
If Ti is the completion time of the task i, then

Ti =
nfi
fs

+
nbwi

dws
+

ndri
drs

+
nneti
nets

(7)

The completion time of the workflow is expressed as

Tmn =

m∑
1

n∑
1

Ti (8)

2) Minimize Energy consumption (i.e. total energy con-
sumed in a workflow)
If Cs(Ti) is the energy consumption of the task i
per unit time when running on server s, then energy
consumption required for the workflow is expressed
as

Wsi =

m∑
1

Cs(Ti)× Ti (9)

and the total energy consumed is

Wmn =

n∑
1

m∑
1

Cs(Ti)× Ti (10)

In most cases, faster machines (low Ti) will have higher energy
consumption (high Cs), implying that objectives Tmn and
Wmn are contradictory — forming the basis of multi-objective
optimization.

V. FRAMEWORK FOR WORKLOAD PLACEMENT

To cope with real conditions such as the increasing scale
of modern data centers, as well as the workload dynamics
and application characteristics that are specific to the Cloud
Computing paradigm, DIET allows users to study large-scale
scenarios that involve thousands of nodes, each executing a
specific workload that evolves during the computation.

The aim of the current framework is twofold: (i) to relieve
researchers of the burden of dealing with deployment, resource
selection and workload fluctuations when they evaluate new
optimization engines and (ii) to offer the possibility to compare
them. This work adds to the infrastructure defined in prior
works from authors in [7]. To perform placement decisions,
users encapsulate their optimisation engine in a program, and
express the workflow along with the precedence between tasks.
The program typically leverages DIET API that allows end
users to create and execute remote services2. The MasterAgent
keeps a description of the physical resources, dynamically
updated by the nodes hosting the services. Finally, the work-
load execution is orchestrated by the DIET workflow engine
that internally relies on a customizable scheduler (cf. Section
II) to assign the resources during the entire execution. We
chose to base our framework on DIET since (i) the latters
relevance in terms of performance and validity has already
been demonstrated [43] and (ii) because it has been recently

2http://graal.ens-lyon.fr/diet/UsersManualDIET2.9/



Fig. 2. Optimisation and workflow execution equence

extended to integrate energy-efficient decisision capabilities
[7].

The workflow execution is performed in 3 phases (Figure
2): (i) service discovery, (ii) computation of mapping solutions
and (iii) workload placement. The service discovery phase
corresponds to the search of an optimization engine within the
infrastructure by a given client. As multiple engines can be
instantiated on the platform, the user can submit its workload
to different engines and compare the cost of generated solu-
tions. The computation of mapping solutions is performed by
at least one server (multiple servers can be put in cooperation
using the same service, based on the engine requirements) with
a platform performance description provided by the Master
Agent. This description is either based on historical data (past
computations) or user-defined benchmarks. Finally, the work-
load placement is performed and results are returned to the
client based on the platform available metrics and monitoring
resolution. Mapping solutions are defined as a collection of
JSON objects. Each solution contains the mapping between a
SeD and a task and an associated cost in terms of workflow
completion time and energy consumption.

Two kinds of experiments have been performed to validate
this approach. The objective of the first one is to evaluate
the computation phase of the engine (i.e., the step where
the optimization engine generates a spectrum of solutions)
while the second is a comparison of algorithms to evaluate the
concrete gain of NSDE-2 compared to an online placement of
workload.

VI. EXPERIMENTAL SETUP AND VALIDATION

Experiments used resources from GRID’5000 [44], a
testbed designed to support experiment-driven research in par-
allel and distributed systems. Located in France, GRID’5000

comprises 29 heterogeneous clusters, with 1,100 nodes, 7,400
CPU cores with various generations of technology spanning
10 physical sites interconnected by a dedicated 10 Gbps
backbone network. By providing bare-metal resource deploy-
ment, GRID’5000 enables users to experiment on all layers
of the software stack of distributed infrastructures, including
high-performance computing, grids, peer-to-peer, and Cloud
computing architectures.

The power measurement in the studied clusters is per-
formed with an energy-sensing infrastructure composed of
external wattmeters produced by the SME Omegawatt. This
energy-sensing infrastructure, also used in previous work [7],
[45], collects at every second the power consumption in aver-
aged watts of each monitored node [46]. A node’s consumption
is determined by averaging past consumption over more than
6,000 measurements, whereas its performance is given by the
number of FLOPS achieved when using all CPU cores to
execute benchmarks are using ATLAS3, HPL4 and Open MPI5.

We have used real-world trace files of an international
company called Prezi Inc 6, who offers a presentation editing
service, which is available on multiple platforms, therefore
they have to convert some of their created media files to
other formats before they can display them on all devices.
Their conversion processes are carried out on virtual machines:
at peak times, they need to launch more instances of these
VMs, but over the weekend they can stop most of them.
They published log files on their website containing workload

3Automatically Tuned Linear Algebra Software: http://sourceforge.net/
projects/math-atlas/

4Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers: http://www.netlib.org/benchmark/hpl/

5High Performance Message Passing Library: http://www.open-mpi.org/
6http://prezi.com/scale/



traces for two weeks of utilization, which serves as a basis
for algorithmic experimentations. They operate three queues in
their Cloud system for the jobs participating in the conversion
processes:

• export: contains jobs which result in downloadable
zipped Prezi files.

• url: these jobs download an image from a URL and
insert them into a Prezi file.

• general: all other conversion jobs (audio, video, pdf,
ppt, etc.).

The lines of the published workload traces have the fol-
lowing format:

2012-12-14 21:35:12 237 general 9.134963

This means that at the given time, a job enters the general
queue with the id 237, and the job will take 9.134963 seconds
to run. The available trace files contain more than 2000000
lines, and their submitted (and processed) jobs highly varies
over the 14 days.

To represent the job heterogeneity and their hardware
requirements, we created a generic multi-thread program in
charge of interpreting and executing requests based on a log
trace description. Each task is represented by an execution of
a bounded number of operations.

An operation is based on the completion of three functions,
simultaneously executed by three different threads:

• A CPU-intensive operation consisting in the multi-
plication of two randomly filled matrices of size
1000x1000 (cpu).

• A disk-intensive operation consisting in the writing
and reading on disk of a 20MB file (disk).

• A network-intensive operation consisting in download-
ing a 5MB file from a remote server (net).

In the context of this experiment, each of the three threads
is in charge of the sequential execution of n functions of the
same type, n being the weight of each function. Each queue
has a weighted sum of functions. We consider the following
mapping for each type of job:

export 2× cpu+ 1× disk + 1× net
url 1× cpu+ 2× disk + 3× net
general 3× cpu+ 1× disk + 1× net

As an example, a job with the id 237 from the general
queue will be completed after the execution of 10 general
operations.

We deploy the DIET middleware on 113 physical nodes as
follows: 111 dedicated nodes for SeD’s, 1 dedicated node for
the Master Agent and 1 dedicated node for the Client. The
machines are picked among six different clusters as presented
in Table I.

A. NSDE-2 engine

NSDE-2 being an evolutionary multi-objective algorithm
works on a population of candidate solutions which improve

TABLE I. EXPERIMENTAL INFRASTRUCTURE.

Cluster Nodes CPU Memory Role

Orion 4 2x6 cores @2.30Ghz 32GB SeD

Sagittaire 38 2x1 core @2.40Ghz 2GB SeD

Taurus 10 2x6 cores @2.30Ghz 32GB SeD

Stremi 38 2x12 cores @1.7Ghz 48GB SeD

Graphite 4 2x6 cores @2.00Ghz 64GB SeD

Parasilo 17 2x6 cores @2.40Ghz 128GB SeD

Parasilo 1 2x6 cores @2.40Ghz 128GB MA

Parasilo 1 2x6cores @2.40Ghz 128GB Client

Fig. 3. Evolution of the solutions as the number of generations increases

on all objectives across generations. The solution at any
generation is presented in the form of a Pareto front which
represents the position of each candidate in the multi-objective
reference frame. Here we work on a population of size 200.
Figure 3 shows the evolution of the Pareto front from an
initial stage of 100 generations up to 10000 generations, with
minimization of energy consumption and makespan as the
objectives. Each dot represents a candidate solution. At any
selected generation, at one end of the Pareto front we have the
best energy solution, and at the other end, the best makespan
solution.

We can observe that the quality of solutions improves as
the number of generations increases. The computation time
increases linearly as the number of generations increase. We
choose to retrieve the solution at 3000 generations, after which
the improvement is solution becomes less significant.

It may be noted that if jobs are submitted on the cloud
for execution after prior reservation, then it can be valuable to
drive the NSDE-2 to its full potential to obtain the best optimal
solution placement.

B. Scalability and Reactivity of NSDE-II

Figure 4 shows improvements in NSDE-2 execution time
with increasing parallelization when the solutions are per-



Fig. 4. NSDE-2 execution time for generating mapping solutions related to
4 datasets and 111 servers

formed on a Stremi node (cf. Table I).

C. Workload placement

This evaluation aims to compare the distribution of tasks
among nodes on GRID’5000 considering three different poli-
cies, namely NSDE-2 Best Energy, NSDE-2 Best Performance
and FIRST FIT. NSDE-2 Best Energy and NSDE-2 Best
Performance correspond, respectively, to the smallest energy
consumption and the smallest makespan. These solutions
establish the bounds of the Pareto Front. The FIRST FIT
policy consists in the selection of the first available server
in an ordered list accroding to the GreenPerf metric as a
non-weighted average ratio between performance and energy
consumption for the said type of task.

In each scenario, we consider the first entries of the trace
file. For any of considered cases there exists a proper balance
between short and long tasks within the dataset. A server is
restricted to the execution of, at most, one task at a given time.

Considering that the scheduler does not have specific
information on the nodes and does not make assumptions
about the hardware, the dynamic information is gathered as
a sample of each tasks is computed by the servers prior to
the experiment. Figures 5, 6, 7 and 8 show the results of this
experiment. The x-axis presents the different algorithms used
to execute the workflow; the y-left-axis shows the total energy
consumption of the solution and the y-right-axis shows the
makespan value.

We observe an influence of the ratio jobs/servers on the
global results. The larger the dataset (specifically in terms of
large tasks), the worst FIRST FIT performs as it prevents the
packing of tasks on the most energy-efficient nodes, resulting
in more uses of least energy-efficient nodes, thus in higher
energy consumption. On small dataset, this effect is hidden by
the fact that fast nodes will compute more tasks in parallel.

Tables II,III,IV show actual values obtained in terms of
energy and time for the three allocation policies, for the 4

Fig. 5. Energy and Makespan comparison for 100 jobs and 111 servers

Fig. 6. Energy and Makespan comparison for 200 jobs and 111 servers

Fig. 7. Energy and Makespan comparison for 500 jobs and 111 servers



Fig. 8. Energy and Makespan comparison for 1000 jobs and 111 servers

TABLE II. ENERGY CONSUMPTION COMPARISON

Cases No of
Jobs

NSDE-2
Best Makespan

(kJ)

NSDE-2
Best Energy

(kJ)

First Fit
GreenPerf

(kJ)

1 100 338.9 338.9 339.8

2 200 1158.1 1020.3 1233.3

3 500 4287.1 4067.7 4901.7

4 1000 8632.5 7943.5 10482

illustrated cases with 111 servers. It may be seen that NSDE-
2 improves for any of the scenarios (except in the smallest case
(Figure 5), and for the larger cases improves makespan as well.
The user may choose to select an intermediate solution on the
Pareto front that improves both energy and makespan, trading-
off between the two objectives. It is worth noting that when the
NSDE-2 solution was run up to 10000 generations, it provided
a 30% saving in energy with a 50% reduction in makespan.
Considering the computation time of the Pareto Front, this can
be of value in cases of jobs submitted by prior reservation.

TABLE III. MAKESPAN COMPARISON

Cases No of
Jobs

NSDE-2
Best Makespan

(m)

NSDE-2
Best Energy

(m)

First Fit
GreenPerf

(m)
1 100 3.94 3.94 4.07

2 200 19.33 26.6 20.56

3 500 30.63 48.0 51.89

4 1000 33.64 47.29 64.47

TABLE IV. COMPARATIVE IMPROVEMENTS USING NSDE-2 IN
MAKESPAN AND ENERGY

Cases No of
jobs

NSDE-2
Computation

time of
solutions

(m)

Makespan
NSDE-2

Performance
(%)

Makespan
NSDE-2
Energy

(%)

Energy
NSDE-2

Performance
(%)

Energy
NSDE-2
Energy

(%)

1 100 3.46 -82 -82 0 0

2 200 6.0 -23 -59 6.1 17.3

3 500 13.63 15 -19 12.5 17.1

4 1000 26.5 7 -14 17.6 24.3

VII. CONCLUSION AND PERSPECTIVES

In this work, we report on design, implementation and
evaluation of an energy-efficient resource management system
that build upon DIET, an open source middleware and NSDE-
II, a an Evolutionary Multi-Objective Optimization engine. Our
implementation supports an IaaS Cloud and currently provides
placement of workflows, considering non-divisble tasks with
precedences constraints. Real-life experiment of our approach
on the GRID’5000 testbed demonstrates the effectiveness of
our approach in a dynamic environnment. Results shows that
our method can provide providers and decision makers an aid
to make their decision when conflicting objectives are present
or when in search for realistic tradeoff for a given problem.

As future works, it would be valuable to add multi-core
integration. This is important as we can expect a significant
reduction in energy consumption when multiple tasks are
loaded in parallel on a machine.
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